
AN EMPIRICAL ASSESSMENT OF THE IMPACT OF ASPECT-
ORIENTED PROGRAMMING ON SOFTWARE MODULARITY

Adam Przybylek
Department of Business Informatics, University of Gdansk, Piaskowa 9, 81-824 Sopot, Poland

adam@univ.gda.pl

Keywords: aspect-oriented programming, AOP, separation of concerns, modular programming.

Abstract: The term “crosscutting concern” describes a piece of system that cannot be cleanly modularized because of
the limited abstractions offered by the traditional programming paradigms. Symptoms of implementing
crosscutting concerns in the languages like C, C# or Java are “code scattering” and “code tangling” that
both degrade software modularity. Aspect-oriented programming (AOP) was proposed as a new paradigm
to overcome these problems. Although it is known that AOP allows programmers to lexically separate
crosscutting concerns, the impact of AOP on software modularity is not yet well investigated. This paper
reports a quantitative study comparing Java and AspectJ implementations of the Gang-of-Four design
patterns with respect to modularity.

1 INTRODUCTION

A software system can be seen as a set of
modules. Each module implements a concern, or a
part of a concern. A concern is a specific
requirement or an interest which pertains to the
system’s development.

Kiczales et al. [18] found that the abstractions
offered by the traditional programming paradigms
(e.g. structured programming, OOP, functional
programming) are insufficient to express some kind
of concerns in a modular way. Concerns like
logging, persistence, concurrency control, or failure
recovery tend to be scattered and tangled throughout
the system modules, what adversely affect software
modularity. These concerns are known as
crosscutting concerns because they cross-cut the
system’s basic functionality [27].

Efforts to deal with crosscutting concerns have
resulted in aspect-oriented programming (AOP).
AOP brings new abstraction such as an aspect, a
joinpoint, a pointcut, an advice, an introduction, and
a parent declaration [19].

An aspect is a module that implements the
behaviour and structure of a crosscutting concern. It

can, like a class, realize interfaces, extend classes
and declare attributes and operations. In addition, it
can extend other aspects and declare advices,
pointcuts, introductions and parent declarations.

A joinpoint is an identifiable location in the
program flow where the implementation of a
crosscutting concern can be plugged in. Typical
examples of joinpoints include a throw of an
exception, a call to a method and an object
instantiation.

A pointcut is a language construct designed to
specify a set of join-points and obtain the context
(e.g. the target object and the operation arguments)
surrounding the join-points as well.

An advice is a method-like construct used to
define an additional behaviour that has to be inserted
at all joinpoint picked out by the associated pointcut.
The body of an advice is the implementation of a
crosscutting functionality. The advice is able to
access values in the execution context of the
pointcut. Depending on the type of advice, whether
“before”, “after” or “around,” the body of an advice
is executed before, after or in place of the selected
joinpoints. An around advice may cancel the

captured call, may wrap it or may execute it with the
changed context [27].

An introduction is used to crosscut the static-type
structure of a given class. It allows a programmer to
add attributes and methods to the class without
having to modify it explicitly. The power of
introduction comes from the introduction being able
to add methods to the interface.

A parent declaration may change the class's
super-class or add implemented interfaces by
defining an extends/implements relationship.

2 MOTIVATIONS AND GOALS

It is often taken as a given that AOP improves
modularity [19], [20], [25], [29], [13]. However,
there is no empirical evidence to support this
assumption. The aim of this research is to perform a
metrics-based comparison among AO and OO
software with respect to modularity.

To date, there has been relatively little work in
the area of developing methodologies for assessing
the modularity of AO systems and for providing a
means of comparison between AO systems and their
OO equivalents [32]. To support such comparison
we propose an approach based on coupling and
cohesion.

Furthermore, the advent of a new paradigm
requires defining new metrics to measure software
quality. Ceccato & Tonella [7] and Sant’Anna et al.
[28] refined the Chidamber & Kemerer metrics suite
[8] regarding the effects of AOP, but they took into
account only a subset of the dependencies that exist
in AO systems. Hence, the coupling measured with
their metrics is underestimated. We intend to revise
the coupling metrics introduced by Ceccato &
Tonella [7] to support a fair comparison between
OO and AO implementations.

3 RATIONALE FOR THE STUDY

The effect of a new paradigm on software
modularity can be evaluated through empirical
studies. This section performs a quantitative
assessment of Java and AspectJ implementations for
the 23 GoF design patterns. As several design
patterns involve crosscutting concerns [14], their
implementations are good candidates for subjects of
the study. Prior studies [14], [11] have shown that
the AO implementations separate some concerns
that are tangled and scattered in the OO

decomposition counterpart. Hannemann & Kiczales
report [14] that “AspectJ implementations of the
GoF design patterns show modularity improvements
in 17 of 23 cases”. However, these modularity
improvements “are manifested in terms of better
code locality, reusability, composability, and
(un)pluggability”. Moreover, much of their
assessment is based on intuition and gut feelings,
rather than empirical support.

In this paper, the implementations are compared
with regard to coupling and cohesion. This pair of
attributes was firstly suggested to measure software
modularity by Yourdon & Constantine [33] as part
of their structured design methodology and then
advocated by other software engineers [6], [23],
[22]. Also, several empirical studies [4], [5], [15],
[26] have found that improvements in coupling and
cohesion are linked to improved modularity.

4 MODULARITY METRICS

Despite cohesion and coupling being concepts in
software design for almost 50 years, we still don’t
have widely-accepted metrics for them. However the
most well-known and widely used for OO
assessment are CBO (Coupling Between Object
classes) and LCOM (Lack of Cohesion in Methods),
defined by Chidamber & Kemerer in their metrics
suite [8]. CBO is a count of the number of other
modules to which a module is coupled. Two classes
are coupled when methods declared in one class use
methods or instance variables of the other class [8].
LCOM is the degree to which methods within a
module are related to one another. It is measured as
the number of pairs of methods working on different
attributes minus pairs of methods working on at least
one shared attribute (zero if negative). Lack of
cohesion implies a module should probably be split
into two or more sub-modules. CBO and LCOM
complement each other, and because of their dual
nature [15], they are useful only when analyzed
together.

Since AOP provides new programming
constructs, existing OO measures cannot be directly
applied to AO software. Ceccato & Tonella [7] and
Sant’Anna et al. [28] generalized the CK metrics
suite to be applied in a paradigm-independent way,
supporting the generation of comparable results
between OO and AO solutions. The general
suggestion is to treat advices as methods and to
consider introductions as members of the aspect that
defines them. Although this suggestion is enough to
adapt LCOM, the adjustment of CBO requires

further explanation. Ceccato & Tonella defined the
following metrics to measure different kinds of
coupling [7]:
– CMC (Coupling on Method Call) is a number of

modules declaring methods that are possibly
called by a given module;

– CFA (Coupling on Field Access) is a number of
modules declaring fields that are accessed by a
given module;

– CAE (Coupling on Advice Execution) is a
number of aspects containing advices possibly
triggered by the execution of operations in a
given module;

– CIM (Coupling on Intercepted Modules) is a
number of modules explicitly named in the
pointcuts belonging to a given aspect;

– CDA (Crosscutting Degree of an Aspect) is a
number of modules affected by the pointcuts and
by the introductions in a given aspect.

Nevertheless, to make the coupling comparable
between the two paradigms, an AO counterpart to
the CBO metric must be defined. For this purpose,
we extrapolate the original CK definition according
to the question that underlies coupling: „How much
of one module must be known in order to understand
another module?” [33]. Our CBO metric considers a
module M to be coupled to N if:
– M accesses attributes of N (A);
– M calls methods of N (M);
– M potentially captures messages to N (C);
– messages to M are potentially captured by N

(C_by);
– M declares an inter-type declaration for N (I);
– M is affected by an inter-type declaration

declared in N (I_by);
– M uses pointcuts of N, excluding the case where

N is an ancestor of M (P).
This metric gives a view of the overall effort needed
to understand the module. It is worth noting that the
dependencies C_by and I_by are semantic. A
dependency is semantic when it can be implied from
the source code though is not directly expressed.
Such kind of dependency makes maintenance a
nightmare without a tool that warns about extensions
to a certain piece of code [17].

The coupling metric that seems to be similar to
ours is the one of Sant’Anna et al. [28]. Their metric
is broader than the original CBO in the sense that it
additionally counts modules declared in formal
parameters, return types, throws declarations and
local variables. However, it is not complete, since it
does take into account neither the implicit
dependencies, nor the dependency that occurs when
an advice refers to a pointcut defined in other, non-
ancestor module.

5 STUDY SETTING

This study uses implementations of the GoF
design patterns made freely available
(http://hannemann.pbworks.com/Design-Patterns) by
Hannemann & Kiczales. For each pattern they
created a small example that makes use of the
pattern, and implemented the example in both Java
and AspectJ. The AspectJ implementations are
considered as „one of the nearest things to examples
of good AOP style and design” [24]. The Java
implementations correspond to the sample C++
implementations in the GoF book.

In the measurement process, the data was
gathered by the AOPmetrics tool [31]. To the best of
our knowledge AOPmetrics is the sole tool to
compute coupling metrics for AO systems. This tool
implements the metric suite proposed by Ceccato &
Tonella [7]. Although several researchers have used
AOPmetrics [16], [21], they are not aware of its
bugs. First of all, the implementation of CDA metric
does not count modules coupled by pointcuts. A
relationship between pointcut and the matched
modules is typed by
org.aspectj.weaver.AsmRelationshipProvider and
marked by the MATCHES_DECLARE constant.
The reverse relationship is marked by
MATCHED_BY. However, the code-walker used by
AOPmetrics does not count these relationships.
Secondly, the values displayed as CDA should be
displayed as CAE and vice versa. To fix this bug it
is enough to swap the lines 107 and 109 in
AspectualAffectedAndEffectedCalculator.java. We
extended AOPmetrics to support the CBO metric as
defined in the previous Section except for capturing
the coupling introduced by pointcuts (the extended
version is available at:
http://przybylek.wzr.pl/AOP/). This is due to the
inherent nature of the implementation as mentioned
above. Hence, we manually revised the CBO values.

6 RESULTS

The CBO and LCOM (LCO in AOPmetrics)
values were collected for each of the 128 modules
across the OO implementations and 179 modules
across the AO implementations. Table 1 presents the
mean values of the metrics, over all modules per
pattern. The lower numbers are better. The sixth and
seventh column indicates the superior
implementation with regard to the CBO and LCOM
metric, respectively. The last column indicates the
winning implementation. An implementation is

winning if it is better in at least one metric and not
worse in the other. According to the last column, the
patterns can be classified into two groups. Group 1
represents 16 patterns at which the OO
implementations are better. All 7 remaining patterns
belong to the second group. In this group, each
implementation is superior with regard to one metric
but inferior with regard to the other (except Adapter,
which has the same metrics for both
implementations). To our surprise, there is no
pattern whose AO implementation exhibits better
modularity.

The linear Pearson's correlation between CBO
and LCOM on a class-by-class level is weak. It
amounts to -0,04 for the OO implementations and
0,06 for the AO implementations. It means that the
analyzed metrics do not capture redundant
information.

For a further analysis of the effects of AOP, we
break the results for this paradigm in two parts: (I)

core concerns, and (II) crosscutting concerns (Table
2). Metrics in each part are calculated as arithmetic
means taken over (I) all modules that implement the
core concerns for a given pattern (it means all
interfaces and classes except the Main class); (II) all
aspects that comprise the pattern. Metrics in the first
part reflect the modularization of core concerns,
while metrics in the second part reflect the
modularization of crosscutting concerns. The
contribution of each part in the overall coupling and
cohesion is shown as a percentage. In order to make
a fair comparison between the two paradigms, Main
classes were also excluded from the OO
implementations. It is worth noting that in the AO
versions most of the “badness” is generally
accumulated within aspects. When comparing the
CBO values for classes and interfaces only, the AO
implementations are better in 4 cases and worse in
10 out of 23.

Table 1: Modularity metrics computed as arithmetic means.

Table 2: Modularity metrics – a detailed view.

The problem with the arithmetic mean is that
each of the modules contributes equally to the final
result. Intuitively, modules which are more
complex should contribute more. In addition,
LCOM is not normalized, which means that the
cohesion measures of different modules (as they all
have different numbers of methods and attributes)
should not be compared. Thus, weighted arithmetic
means were also calculated. The individual CBO
and LCOM values are weighted by the number of
methods defined in the module, plus one. Table 3
presents the averages calculated in this way. As it
turns out, no pattern changes its group.

7 DEEPER INSIGHT INTO
MODULARITY

An established technique for analysing the
dependencies among the modules of a system is
Dependency Structure Matrix (DSM). A DSM is a
square matrix in which the columns and rows are

labelled with modules and a non-empty cell
models that the module on the row depends on the
module on the column. The type of dependency is
represented by the value of the cell (the shortcuts
are introduced in Section 4). The CBO metric for a
module can be calculated from a DSM by counting
non-empty cells in the row. To provide complex
insight into modularity, LCOM for each module is
also presented. The differences between
modularity in the OO and AO implementations are
shown on the Observer pattern. Figure 1 shows the
dependency matrixes for this pattern.

The participants in the Observer pattern are
subjects and observers. The subject is a data
structure which changes over time (such as a
point), and the observer (a screen) is an object
whose own invariants depend on the state of the
subject. The intention of the Observer pattern is to
define a one-to-many dependency between a
subject and multiple observers, so that when the
subject changes its state, all its observers are
notified [14].

Table 3: Modularity metrics computed as weighted arithmetic means.

Figure 1: DSMs for the Observer pattern.

In the OO implementation, the business logic and
the pattern context are tangled within the participant
classes. As a result, Point and Screen have a poor
cohesion. Moreover, code for implementing the
pattern is spread across all participants. In the AO
implementation, all code pertaining to the
relationship between observers and subjects is
moved into aspects. Hence, the participant classes
are entirely free of the pattern context, and as a
consequence they are much more cohesive. In the
OO version, a point directly informs its observers by
sending a message to them. In the AO version, even
though Point does not have any reference to its
observers, the coupling has not disappeared. The
coupling has changed its form from explicit method
call to implicit join-points matching. Whenever a
point changes its state, the relevant advice is
triggered and the observers are notified. Since not all
the dependencies between the modules are explicit,
an AO programmer has to perform more efforts to
get a mental model of the source code.

8 THREATS TO VALIDITY

There are a number of limitations of this study
that are worth stating. Firstly, we could be criticised
for narrowing the software modularity to cohesion
and coupling. Although cohesion and coupling are
considered as main factors related to the goodness of
modularization [6], [23], [4], [5], [15], [26] other
factors like obviousness, information hiding, and
separation of concerns are also notable. However
any reasonable model to estimate modularity has
never been proposed and we do not make an effort
to build ours. Instead, we assumed restrictive criteria
to decide whether implementation in a given
paradigm can be considered more modular: it must
be better in at least one metric and not worse in the
other.

Secondly, we could be criticised for applying
metrics that are theoretically flawed. Briand et al.
demonstrate [2] that LCOM is neither normalized
nor monotonic. Normalization is intended to allow
for comparison between modules of different size.
To avoid this anomaly we weighted LCOM by the
number of methods. Monotonicity states that adding
a method which shares an attribute with any other
method of the same module, must not increase
LCOM. If we drop the very rare case where the
methods of a module do not reference any of the
attributes, the monotonicity anomaly disappears. The
other problem with LCOM is that it does not
differentiate modules well [1]. This is partly due to

the fact that LCOM is set to zero whenever there are
more pairs of methods which use an attribute in
common than pairs of methods which do not [2]. In
addition, the presence of access methods artificially
decreases this metric. Access methods typically
reference only one attribute, namely the one they
provide access to, therefore they increase the
number of pairs of methods in the class that do not
use attributes in common [2]. The CBO metric also
indicates inherent weakness. Briand et al. illustrate
[3] that merging two unconnected modules may
affect the overall coupling. Nevertheless, CBO as
well as LCOM are widely applied (even at NASA
Goddard Space Flight Center) and have been
validated in many empirical studies [1], [3], and [4].

Thirdly, the applied metrics address only one
possible dimension of cohesion and coupling.
Moreover, CBO implicitly assumes that all basic
couples are of equal strength [15]. In addition, it
takes a binary approach to coupling between
modules: two modules are either coupled or not.
Multiple connections to the same module are
counted as one [3]. In our defence we would point
out that even the OO community has yet to arrive at
a consensus about the appropriate measurement of
coupling and cohesion. The interested reader is
referred to [15], [2], and [3] where an extensive
surveys have been presented.

Fourthly, we could be criticised for generalizing
findings from AspectJ to AOP. In our defence, most
of the claims about the superiority of the AO
modularization have been made in the context of
AspectJ. It also should be noted that AspectJ is the
only production-ready general purpose AO
language.

Finally, although „the GoF patterns effectively
comprise a microcosm of many possible systems”
[30], the conclusions obtained from our study are
restricted to small-sized systems only. However, our
experience indicates that in case of larger systems,
when multiple advices apply to the same join point
and when different aspects influence each other,
modularity is even harder to achieve. The similar
observation was reported by Kästner et al. [17]. We
would also like to mention that the chosen sample
favours AOP. This is due to the facts that: (1) a
number of design patterns intensively involve
crosscutting concerns [14]; and (2) recent studies
have shown that OO constructs are not able to
modularize these pattern-specific concerns and tend
to lead to programs with poor modularity [11].

To conclude, we are mindful that the limited size
of the examples restricts the extrapolation of our
results. We are also well aware that CBO and

LCOM suffer from several disadvantages. We also
known that the modularity evaluated in our setting
may differ from the real modularity. The reason is
that, it is not yet clear neither how to best measure
attributes such as coupling and cohesion, nor how to
compare modularity between systems that were
developed in different paradigms. Nevertheless, the
examples provide enough evidence to challenge the
claim that AOP enables to achieve a better
modularization.

9 RELATED WORK

There are a few studies focusing on the
quantitative assessment of the AO modularization.
However, the metrics of coupling they use are
incomplete. It should be also noted that most
researchers compare aggregate coupling and
cohesion between an OO and AO version of the
same systems. Aggregate coupling (cohesion) for a
system is calculated as the sum of coupling
(cohesion) taken over all modules. However,
aggregate coupling (cohesion) says nothing about
the goodness of modularization. In addition,
aggregate coupling does not satisfy the second
axiom of Fenton & Melton [9] for coupling
measures. This axiom states that system coupling
should be independent from the number of modules
in the system. If a module is added and shows the
same level of pairwise coupling as the already
existing modules, then the coupling of the system
remains constant.

The experiment closest to ours is the one
conducted by Garcia et al. [11]. They also compared
the AO and OO implementations of the Gang-of-
Four patterns but in different settings. Firstly, they
applied the metrics suite of Sant’Anna et al. [28].
Secondly, their results “represent the tally of metric
values associated with all the classes and aspects for
each pattern implementation”, while our results
represent the average of metric values. Thirdly, they
performed two studies, one on the original
implementations from Hannemann & Kiczales and
the other on the implementations with introduced
changes. These changes were introduced because the
H&K implementations encompass few participant
classes to play pattern roles [11]. Garcia and his
team conclude their study as follows: ”We have
found that most AO solutions improved the
separation of pattern related concerns. In addition,
we have found that: the use of aspects helped to
improve the coupling and cohesion of some pattern
implementations.” However this conclusion may be

misleading, according to the metrics they collected.
The measures before the application of the changes
exhibit that only Composite and Mediator present
lower coupling for the AO solutions. The
implementations of Adapter and State have the same
coupling in the both paradigms. In cases of the other
patterns, the OO solutions indicate lower coupling.
The superiority of OO solutions decreased a little
after the changes were introduced. Although the AO
implementations of Observer, Chain of
responsibility, State and Visitor became better with
respect to coupling than their OO counterparts, there
are still 16 patterns for which the OO
implementations provide superior results.

Sant’Anna et al. [28] conducted a semi-
controlled experiment to compare the use of an OO
approach (based on design patterns) and an AO
approach to implement Portalware (about 60
modules and over 1 KLOC), a multi-agent system.
Portalware is a web-based environment that supports
the development and management of Internet
portals. The collected metrics show that the AO
version incorporates modules with higher coupling
and lower cohesion.

The other studies either do not consider the
coupling introduced by pointcuts at all [21], [10],
[12] or consider it only if a module is explicitly
named by the pointcut expression [32], [16]. No
matter which of these two categories the study
belongs to, the measured coupling is underestimated.

Greenwood et al. [12] chose the Health Watcher
(HW) system (about 100 modules and over 5
KLOC) as the base for their study. HW is a web-
based information system that was developed by
Soares [29] for the healthcare bureau of the city of
Recife, Brazil. It involves a number of recurring
concerns and technologies common in day-to-day
software development, such as GUI, persistence,
concurrency, RMI, Servlets and JDBC. Both the OO
and AO designs of the HW system were developed
with modularity and changeability principles as
main driving design criteria. Greenwood et al. found
that “modularity” is improved with AOP; the
average coupling as well as cohesion were enhanced
by 17%.

Madeyski & Szała [21] examined the impact of
AOP on software development efficiency and design
quality in the context of a web-based manuscript
submission and a review system (about 80 modules
and 4 KLOC). Three students took part in their
study. Two of them developed the system (labelled
as OO1 and OO2) using Java, whilst one
implemented the system using AspectJ. The
observed results show that the AO version is 24%

better than the others with regard to average
“coupling” and it is 60% (3%) better then OO1
(OO2) with regard to average cohesion.

Filho et al. [10] investigated how metrics were
affected in three real-world applications when
exception handling was implemented using AspectJ
instead of Java. The first application is a subset (224
modules) of Telestrada, a traveller information
system being developed for a Brazilian national
highway administrator. The second application is Pet
Store (339 modules), a demo for the J2EE platform
that is representative of existing e-commerce
applications. The last application is CVS Core
Plugin (257 modules), part of the basic distribution
of the Eclipse platform. Filho and his team analyzed
the aggregate values. After dividing these values by
the number of modules, it turns out that the average
“coupling” was decreased by 6%, 9%, and 1%. At
the same time, the average cohesion was decreased
by 3% for the second system and increased by 19%
and 4% for the others. Filho et al. [10] are aware that
their study does not consider the coupling introduced
by pointcuts: “a closer examination on the code (...)
reveals a subtle kind of coupling that is not captured
by the employed metrics.”

The Telestrada and Pet Store systems were also
used by Hoffman & Eugster. In their study [16], they
calculated two coupling metrics, namely CBM and
CIM. However, since CBM and CIM are not simply
additive, the results are difficult to interpret.

Tsang et al. [32] compared AO vs. OO solutions
in the context of real time traffic simulator. They
found that aspects improved modularity by reducing
“coupling” and cohesion. They considered aspects
coupled to classes only if the aspects explicitly
named the classes. “For instance, if we have the
joinpoint call(* *(..)), then the aspect is not coupled
to any classes. However, if we have the joinpoint
call(void Test.methodName(..)), then the aspect is
coupled to Test.” In conclusion of their work, they
recommend the use of wildcards to maximise
modularity improvements. Following this reasoning,
one could recommend to replace the previous
pointcut by call(void Test.methodNam*(..)), where
‘*’ instead of ‘e’ eliminates „coupling”.

10 SUMMARY

This paper presents an empirical study in which
we compare OO and AO implementations of the
GoF patterns with respect to modularity. The
evaluation is performed applying the CBO and

LCOM metrics from the CK suite, which were
adapted for use on AO systems.

The contribution of this research can be
summarized as follows. Firstly, we defined a new
metric for coupling. The existing metrics are invalid
for evaluating coupling in AO systems, since they do
not take into account semantic dependencies
between the system modules. Our metric can be
applied to OO as well as AO systems. Furthermore,
we improved AOPmetrics whose objective is to
collect metrics of Java and AspectJ source code.

Secondly, we demonstrated how to compare
modularity between OO and AO implementations.
We also gave several theoretical and intuitive
arguments to support our approach.

Finally, we found that the claim that AOP
promotes better modularity of software than OOP is
a myth. There was no pattern whose AO
implementation exhibited lower coupling, while 22
patterns presented lower coupling in the original
version. The reason is that aspects are tightly
connected with the affected classes. With regard to
cohesion the OO implementations were superior in 9
cases, while the AO ones in 6 cases. 8 patterns
exhibited the same cohesion in both
implementations. As far as we know, this is the first
presentation of empirical evidence to this effect.
Although some empirical studies were undertaken in
the context of AO modularity, none of them took
into account all the significant dependencies. Hence,
they favoured AOP. In our future work, we would
like to perform further empirical evaluations on
larger AO systems.

REFERENCES

1. Basili, V.R., Briand, L.C., Melo, W.L., 1996. A
Validation of Object-Oriented Design Metrics as
Quality Indicators. IEEE Transactions on Software
Engineering vol. 22(10), pp. 751-761

2. Briand, L.C., Daly, J.W., Wüst, J., 1998. A Unified
Framework for Cohesion Measurement in Object-
Oriented Systems. Empirical Softw. Engg. vol. 3(1),
pp. 65-117

3. Briand, L.C., Daly, J.W., Wüst, J.K., 1999. A Unified
Framework for Coupling Measurement in Object-
Oriented Systems. IEEE Transactions on Software
Engineering vol. 25(1), pp. 91-121

4. Briand, L.C., Morasca, S., Basili, V.R., 1999. Defining
and Validating Measures for Object-Based High-Level
Design. IEEE Trans. Softw. Eng. vol. 25(5), pp. 722-
743

5. Briand, L.C., Wüst, J.K., Lounis, H., 2001. Replicated
Case Studies for Investigating Quality Factors in

Object-Oriented Designs. Empirical Software Eng.,
vol. 6(1), pp. 11-58

6. Booch, G., 1994. Object-oriented Analysis and Design
with Applications. Benjamin-Cummings, Redwood
City, California

7. Ceccato, M., Tonella, P., 2004. Measuring the Effects
of Software Aspectization. In: 1st Workshop on Aspect
Reverse Engineering, Delft, Netherlands

8. Chidamber, S.R., Kemerer, C.F., 1994. A Metrics
Suite for Object Oriented Design. IEEE Trans. Softw.
Eng. 20, 6 (Jun. 1994), pp. 476-493

9. Fenton, N., Melton, A., 1990. Deriving Structurally
Based Software Measures. J. Syst. Software vol. 12,
pp. 177-187

10. Filho, F.C., Cacho, N., Figueiredo, E., Maranhão, R.,
Garcia, A., Rubira, C.M., 2006. Exceptions and
aspects: the devil is in the details. In: 14th ACM
SIGSOFT international Symposium on Foundations of
Software Engineering, Portland, Oregon

11. Garcia, A., Sant'Anna, C., Figueiredo, E., Kulesza, U.,
Lucena, C., von Staa, A., 2005. Modularizing design
patterns with aspects: a quantitative study. In: 4th
international Conference on Aspect-Oriented Software
Development (AOSD'05), Chicago, Illinois

12. Greenwood, P., Bartolomei, T.T., Figueiredo, E.,
Dósea, M., Garcia, A.F., Cacho, N., Sant'Anna, C.,
Soares, S., Borba, P., Kulesza, U., Rashid, A., 2007.
On the Impact of Aspectual Decompositions on
Design Stability: An Empirical Study. In: 21st
European Conference on Object-Oriented
Programming (ECOOP'07), Berlin, Germany

13. Guyomarc'h, J., Guéhéneuc, Y., 2005. On the Impact
of Aspect-Oriented Programming on Object-Oriented
Metrics. In: Workshop on Quantitative Approaches in
Object-Oriented Software Engineering at ECOOP'05,
Glasgow, UK

14. Hannemann, J., Kiczales, G., 2002. Design Pattern
Implementation in Java and AspectJ. In: 17th
Conference on Object-Oriented Programming
Systems, Languages, and Applications, Seattle

15. Hitz, M., Montazeri, B., 1995. Measuring Coupling
and Cohesion in Object-Oriented Systems. In: 3rd
International Symposium on Applied Corporate
Computing, Monterrey, Mexico

16. Hoffman, K., Eugster, P., 2007. Bridging Java and
AspectJ through explicit join points. In: 5th
international Symposium on Principles and Practice
of Programming in Java, Lisboa, Portugal

17. Kästner, C., Apel, S., Batory, D., 2007. A Case Study
Implementing Features using AspectJ. In: 11th
International Conference of Software Product Line
Conference (SPLC'07), Kyoto, Japan

18. Kiczales, G., Lamping, J., Mendhekar, A., Maeda,
Ch., Lopes, C.V., Loingtier, J., Irwin, J., 1997.
Aspect-Oriented Programming. LNCS, vol. 1241, pp.
220-242. Springer, New York

19. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M.,
Palm, J., Griswold, W. G., 2001. An Overview of
AspectJ. In: 15th European Conference on Object-

Oriented Programming (ECOOP’01), Budapest,
Hungary

20. Lesiecki, N., 2002. Improve modularity with aspect-
oriented programming. http://www.ibm.com/
developerworks/library/j-aspectj/

21. Madeyski, L., Szała, Ł., 2007. Impact of aspect-
oriented programming on software development
efficiency and design quality: an empirical study. IET
Software Journal, vol. 1(5), pp. 180–187

22. Mancoridis, S., Mitchell, B. S., Rorres, C., Chen, Y.,
Gansner, E.R., 1998. Using Automatic Clustering to
Produce High-Level System Organizations of Source
Code. In: 6th international Workshop on Program
Comprehension (IWPC'98), Ischia, Italy

23. Meyer B., 1989. Object-oriented Software
Construction, Prentice Hall

24. Monteiro, M.P., Fernandes, J.M., 2005. Towards a
Catalog of Aspect-Oriented Refactorings. In: 4th
international Conference on Aspect-Oriented Software
Development (AOSD'05), Chicago, Illinois

25. Munoz, F., Baudry, B., Barais, O., 2008. A
classification of invasive patterns in AOP. In: 24th
IEEE International Conference on Software
Maintenance (ICSM’08), Beijing, China

26. Ponnambalam, K., 1997. Characterization and
Selection of Good Object-Oriented Design. In:
Workshop on OO Design at OOPSLA’97, Atlanta,
Georgia

27. Przybylek, A., 2007. Post Object-Oriented Paradigms
in Software Development: a Comparative Analysis. In:
1st Workshop on Advances in Programming
Languages at IMCSIT'07, Wisła, Poland

28. Sant’Anna, C., Garcia, A., Chavez, C. Lucena, C., von
Staa, A., 2003. On the Reuse and Maintenance of
Aspect-Oriented Software: An Assessment
Framework. In: 17th Brazilian Symposium on
Software Engineering (SEES'03), Manaus, Brazil

29. Soares, S., 2004. An Aspect-Oriented Implementation
Method. PhD thesis, Federal University of
Pernambuco, Brazil

30. Srivisut, K., Muenchaisri, P., 2006. Determining
Threshold of Aspect-Oriented Software Metrics. In:
3rd International Joint Conference on Computer
Science and Software Engineering, Bangkok, Thailand

31. Stochmiałek, M., 2005. AOPmetrics.
http://aopmetrics.tigris.org

32. Tsang, S.L., Clarke, S., Baniassad, E., 2004. Object
metrics for aspect systems: Limiting empirical
inference based on modularity. Technical Report,
Trinity College Dublin

33. Yourdon, E., Constantine, L. L., 1979. Structured
Design: Fundamentals of a Discipline of Computer
Program and System Design. Prentice-Hall, New York

	1 INTRODUCTION
	2 MOTIVATIONS AND GOALS
	3 RATIONALE FOR THE STUDY
	4 MODULARITY METRICS
	5 STUDY SETTING
	6 RESULTS
	7 DEEPER INSIGHT INTO MODULARITY
	8 THREATS TO VALIDITY
	9 RELATED WORK
	10 SUMMARY

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

